Smart Rainwater Harvesting

Capstone Design Class
Michaela Goff, Irma Gizela Gonzalez, Francisco Zapata
GZG Water Solutions
December 1, 2017
Sponsors

- Client: Mr. Pablo Marvin, Director of the Hacienda Santa Clara in San Miguel de Allende, Guanajuato Mexico
- Sponsors:
 - Mr. Luis Cifuentes, Special Assistant to the President Texas A&M Corpus Christi
 - Ms. Cynthia Lyle, Senior Research Development Officer Texas A&M Corpus Christi
- Faculty Advisor: Dr. Fouad Jaber, Associate Professor and Extension Agricultural Engineering Specialist - Texas A&M AgriLife Research & Extension (Dallas)
- Project Manager: Dr. Maria King
Project Scope

- As water shortages are becoming an issue worldwide, solutions to meet water demand in a sustainable way are much needed. In Mexico, around half of the population live in rural areas surrounding big cities. San Miguel de Allende is an example.
- The goal is to design a smart rainwater harvesting system to provide water to the area around the hacienda for a variety of uses.
- Constraints:
 - Design must be easy to maintain and economically efficient
 - All materials must be locally available
Location: Hacienda Santa Clara
Detailed Deliverables

- Design Solution
 - Solidworks Model
- System Maintenance Manual
- Cost Benefit Economic Analysis
- Design Notebook
Design Literature

Design Approach

- What is Rainwater Harvesting RWH?
 - Rainwater harvesting (RWH) is a system to collect and store runoff from rainfall, either for immediate use, or to be used at a later time
 - Types of Systems
 - Simple - distribute water immediate
 - gutters, sloped sidewalk, catchment systems (cannot be water permeable)
 - Complex - store some to all for later use
 - Conveying system + storage containers

- System able to switch from a large scale to a small scale system using a complex RWH system that has two separate outlets
 - One outlet for potable water (small scale)
 - One outlet for irrigation water (large scale)
Method and Materials

- Research/Data Needed
 - Rainfall estimate for 2017- to take into consideration natural disasters that have occurred in the past year due to climate change
 - Data from 2016: Average rainfall per year in San Miguel de Allende is about 27.5 in.
 - Dry Periods: November - April
 - Wet Periods: May - October (account for over harvesting of water)
 - Existing systems currently used in rural areas near the Hacienda
 - EWB has already worked with IRRA Mexico to deliver potable water for families/clinics/schools
 - Contact Gabriela Lagunes - lead engineer on team that did maintenance and replaced systems
 - Existing systems used to purify and move varying amounts of water
 - Will be examining existing systems at the Texas A&M AgriLife Extension center
Design Alternatives: Storage Containers

- **Placement**
 - Rooftop
 - Underground

- **Contamination**
 - ROV inspections that occur every year (not prevention)
 - Screen Filters
 - Remove debris/insect

- **Materials**
 - Fiberglass
 - Polyethylene (least expensive and most common)
 - Wood
 - Metal
 - Concrete

<table>
<thead>
<tr>
<th></th>
<th>Expected Life</th>
<th>General Availability</th>
<th>Transportability</th>
<th>Maint. Requirement</th>
<th>Build Your Own</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Above Ground Polyethylene</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Below Ground Polyethylene</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cement</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Ferrocement</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Plastered Tires</td>
<td>+++</td>
<td>-</td>
<td>---</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Stone</td>
<td>+++</td>
<td>-</td>
<td>---</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Wood</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

-- Low/No + High/Yes
Design Alternatives: Water Purification

- Ultraviolet Light
 - Light goes through cell wall of organism, disrupting cell genetic makeup, which ceases the reproduction of microorganism
- Membrane Filtration
 - Pushes water through a layer of material
- Distillation
 - Provides purest form of water, but most expensive and complicated
 - Requires boiling water in an enclosed container
- Chlorine Dioxide Tablets
 - Modern solution to distillation
 - Kill all microorganisms in water
 - Portable and easy to store
Roadmap and Timeline

Smart Rainwater Harvesting

- Memorandums
- Research
 - General Research
 - Literature Review
 - Materials Research
- Decisions
 - Initial Design Approach
 - Materials
- Travel
 - RCN CE3SRAR meeting - Corpus Christi
 - Texas A&M AgriLife Extension - Dallas
 - Hacienda Santa Clara - Mexico
- Deliverables
 - Project Roadmap Report
 - Design Solution
 - Design Notebook
 - Economic Analysis
 - Final Report
- Presentations
 - Corpus Christi Presentation Preparation
 - Corpus Christi Presentation
 - Project Roadmap Preparation
 - Final Roadmap Preparation
 - Final Presentation
Communication

• Bi-weekly memorandums sent to client, sponsors, faculty advisor, and project manager.
• Monthly WebEx Meetings
• Other emails sent and meetings held as needed
Any Questions?